Telegram Group & Telegram Channel
A Modern Self-Referential Weight Matrix That Learns to Modify Itself [2022] - поговорим о странном

Существуют совсем альтернативные обучающиеся системы, не использующиеся на практике. Эта концепция довольно забавная и будет использоваться в следующем посте, поэтому давайте о ней поговорим.

У нас есть матрица весов W. На каждом шаге она получает на вход какой-то вектор x. Результирующий вектор Wx разбивается на части y, k, q, b.
- y - это выход модели
- k, q и b - величины, использующиеся, чтобы обновить матрицу W. В расчётах там используется внешнее произведение векторов k и Wq, чтобы получить сдвиг для матрицы W, b используется в качестве learning rate. Всё немного сложнее в реальности, но примерно так.

Таким образом, в одной матрице зашито всё - и веса, и обучающий алгоритм этих весов. Всё будущее поведение системы задаётся только инициализацией матрицы W.

Вы спросите - нахрена это надо? Расскажу, как в принципе это может работать.

Данная матрица может быть полноценным few-shot learning алгоритмом. Чтобы её натренировать, мы сэмплируем из датасета с картинками N объектов из K классов, подаём эти N*K образцов и ответов в систему по одному, а затем учимся предсказывать тестовые сэмплы, бэкпропом пробрасывая градиенты и обновляя инициализацию матрицы W. Так делаем много раз, и со временем W на новой задаче начинает неплохо работать. Но не лучше топовых few-shot подходов.

Настоящий взрыв мозга с этой штукой я расскажу в следующем посте, а пока всем хороших выходных 😁

@knowledge_accumulator



tg-me.com/knowledge_accumulator/86
Create:
Last Update:

A Modern Self-Referential Weight Matrix That Learns to Modify Itself [2022] - поговорим о странном

Существуют совсем альтернативные обучающиеся системы, не использующиеся на практике. Эта концепция довольно забавная и будет использоваться в следующем посте, поэтому давайте о ней поговорим.

У нас есть матрица весов W. На каждом шаге она получает на вход какой-то вектор x. Результирующий вектор Wx разбивается на части y, k, q, b.
- y - это выход модели
- k, q и b - величины, использующиеся, чтобы обновить матрицу W. В расчётах там используется внешнее произведение векторов k и Wq, чтобы получить сдвиг для матрицы W, b используется в качестве learning rate. Всё немного сложнее в реальности, но примерно так.

Таким образом, в одной матрице зашито всё - и веса, и обучающий алгоритм этих весов. Всё будущее поведение системы задаётся только инициализацией матрицы W.

Вы спросите - нахрена это надо? Расскажу, как в принципе это может работать.

Данная матрица может быть полноценным few-shot learning алгоритмом. Чтобы её натренировать, мы сэмплируем из датасета с картинками N объектов из K классов, подаём эти N*K образцов и ответов в систему по одному, а затем учимся предсказывать тестовые сэмплы, бэкпропом пробрасывая градиенты и обновляя инициализацию матрицы W. Так делаем много раз, и со временем W на новой задаче начинает неплохо работать. Но не лучше топовых few-shot подходов.

Настоящий взрыв мозга с этой штукой я расскажу в следующем посте, а пока всем хороших выходных 😁

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/86

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA